
curl_multi_socket_action(3) libcurl Manual curl_multi_socket_action(3)

NAME
curl_multi_socket_action − reads/writes available data given an action

SYNOPSIS
#include <curl/curl.h>

CURLMcode curl_multi_socket_action(CURLM * multi_handle,
curl_socket_t sockfd,
int ev_bitmask,
int *running_handles);

DESCRIPTION
When the application has detected action on a socket handled by libcurl, it should call
curl_multi_socket_action(3) with thesockfd argument set to the socket with the action. When the events on
a socket are known, they can be passed as an events bitmaskev_bitmask by first settingev_bitmask to 0,
and then adding using bitwise OR (|) any combination of events to be chosen from CURL_CSELECT_IN,
CURL_CSELECT_OUT or CURL_CSELECT_ERR. When the events on a socket are unknown, pass 0
instead, and libcurl will test the descriptor internally. It is also permissible to pass CURL_SOCKET_TIME-
OUT to thesockfdparameter in order to initiate the whole process or when a timeout occurs.

At return, the integer running_handles points to will contain the number of running easy handles within
the multi handle. When this number reaches zero, all transfers are complete/done. When you call
curl_multi_socket_action(3) on a specific socket and the counter decreases by one, it DOES NOT necessar-
ily mean that this exact socket/transfer is the one that completed. Usecurl_multi_info_read(3) to figure out
which easy handle that completed.

The curl_multi_socket_action(3) functions inform the application about updates in the socket (file
descriptor) status by doing none, one, or multiple calls to the socket callback function set with the CURL-
MOPT_SOCKETFUNCTION option tocurl_multi_setopt(3). They update the status with changes since
the previous time the callback was called.

Get the timeout time by setting theCURLMOPT_TIMERFUNCTION option with curl_multi_setopt(3).
Your application will then get called with information on how long to wait for socket actions at most before
doing the timeout action: call thecurl_multi_socket_action(3) function with thesockfd argument set to
CURL_SOCKET_TIMEOUT. You can also use thecurl_multi_timeout(3) function to poll the value at any
given time, but for an event-based system using the callback is far better than relying on polling the timeout
value.

CALLB ACK DETAILS
The socketcallback function uses a prototype like this

int curl_socket_callback(CURL *easy, /* easy handle */
curl_socket_t s, /* socket */
int action, /* see values below */
void *userp, /* private callback pointer */
void *socketp); /* private socket pointer,

NULL if not
previously assigned with
curl_multi_assign(3)*/

The callback MUST return 0.

The easy argument is a pointer to the easy handle that deals with this particular socket. Note that a single
handle may work with several sockets simultaneously.

Thes argument is the actual socket value as you use it within your system.

libcurl 7.16.0 9 Jul 2006 1



curl_multi_socket_action(3) libcurl Manual curl_multi_socket_action(3)

Theaction argument to the callback has one of five values:

CURL_POLL_NONE (0)
register, not interested in readiness (yet)

CURL_POLL_IN (1)
register, interested in read readiness

CURL_POLL_OUT (2)
register, interested in write readiness

CURL_POLL_INOUT (3)
register, interested in both read and write readiness

CURL_POLL_REMOVE (4)
unregister

The socketp argument is a private pointer you have previously set withcurl_multi_assign(3) to be associ-
ated with thes socket. If no pointer has been set, socketp will be NULL. This argument is of course a ser-
vice to applications that want to keep certain data or structs that are strictly associated to the given socket.

The userp argument is a private pointer you have previously set withcurl_multi_setopt(3) and the CURL-
MOPT_SOCKETDAT A option.

RETURN VALUE
CURLMcode type, general libcurl multi interface error code.

Before version 7.20.0: If you receive CURLM_CALL_MULTI_PERFORM, this basically means that you
should callcurl_multi_socket_action(3) again before you wait for more actions on libcurl’s sockets. You
don’t hav e to do it immediately, but the return code means that libcurl may have more data available to
return or that there may be more data to send off before it is "satisfied".

The return code from this function is for the whole multi stack. Problems still might have occurred on indi-
vidual transfers even when one of these functions return OK.

TYPICAL USAGE
1. Create a multi handle

2. Set the socket callback with CURLMOPT_SOCKETFUNCTION

3. Set the timeout callback with CURLMOPT_TIMERFUNCTION, to get to know what timeout value to
use when waiting for socket activities.

4. Add easy handles with curl_multi_add_handle()

5. Provide some means to manage the sockets libcurl is using, so you can check them for activity. This can
be done through your application code, or by way of an external library such as libevent or glib.

6. Call curl_multi_socket_action(..., CURL_SOCKET_TIMEOUT, 0, ...) to kickstart everything. To get
one or more callbacks called.

7. Wait for activity on any of libcurl’s sockets, use the timeout value your callback has been told.

8, When activity is detected, call curl_multi_socket_action() for the socket(s) that got action. If no activity
is detected and the timeout expires, callcurl_multi_socket_action(3) with CURL_SOCKET_TIMEOUT.

AV A ILABILITY
This function was added in libcurl 7.15.4, and is deemed stable since 7.16.0.

libcurl 7.16.0 9 Jul 2006 2



curl_multi_socket_action(3) libcurl Manual curl_multi_socket_action(3)

SEE ALSO
curl_multi_cleanup(3), curl_multi_init (3), curl_multi_fdset(3), curl_multi_info_read (3), the hiper-
fifo.c example

libcurl 7.16.0 9 Jul 2006 3


